*O***-Acetyl Oximes as Transformable** Directing Groups for Pd-Catalyzed C-H **Bond Functionalization**

Sharon R. Neufeldt and Melanie S. Sanford*

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109-1055

1) AcOH/Ac₂O
2) 5 mol % Pd(OAc)₂

mssanfor@umich.edu

Received November 25, 2009

*^O***-Acetyl oximes serve as effective directing groups for Pd-catalyzed sp2 and sp3 ^C**-**H functionalization reactions. The C**-**H functionalization products can be subsequently transformed into** *ortho-* **or -functionalized ketones, alcohols, amines, and heterocycles.**

ABSTRACT

OAc Directing Group

Over the past decade, palladium-catalyzed ligand-directed ^C-H functionalization has been extensively exploited to convert unactivated carbon-hydrogen bonds into carbonheteroatom and carbon-carbon bonds.¹ Despite the rapidly growing arsenal of methods in the field, the synthetic utility of these transformations is limited by the requirement that a directing group be built into the substrate. In particular, many effective directing groups are nitrogen-containing heterocycles that are not easily transformed or removed following the C-H functionalization event.¹

The ideal directing ligand would be sufficiently robust to tolerate C-H activation/functionalization conditions but then readily converted into diverse functional groups. Instances of such directing groups in Pd-catalyzed reactions are relatively rare. Yu and Shi have independently demonstrated C-H functionalization of triflamide^{2a}- and dimethyl^{2b}protected benzyl amines followed by nucleophilic displacement or reduction of the amine directing group. Oxazolines have been used for Pd-catalyzed $C-I$ bond forming reactions

followed by H_2SO_4 -catalyzed hydrolysis to afford carboxylic acids.³ Carboxylic acids have also been directly employed in Pd-catalyzed C-H arylation and then removed by decarboxylation.4 Finally, amides have proven effective for directing Pd-catalyzed C-C and C-halogen bond formation and have been subsequently transformed into nitriles^{5a} or carboxylic acids.^{5b}

Ketones are particularly versatile and widely used synthetic intermediates.⁶ However, ketones are poor ligands for Pd^H and thus are generally ineffective directing groups for Pdcatalyzed $C-H$ functionalization.^{7,8} We thus sought to temporarily mask ketones as more coordinating imine or oxime derivatives during C-H functionalization and then

⁽¹⁾ For reviews, see: (a) Dick, A. R.; Sanford, M. S. *Tetrahedron* **2006**, *62*, 2439. (b) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q. N.; Lazareva, A. *Synlett* **2006**, 3382. (c) Alberico, D.; Scott, M. E.; Lautens, M. *Chem. Re*V*.* **²⁰⁰⁷**, *¹⁰⁷*, 174. (d) Li, B. J.; Yang, S. D.; Shi, Z. J. *Synlett* **2008**, 949. (e) Deprez, N. R.; Sanford, M. S. *Inorg. Chem.* **2007**, *46*, 1924. (f) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. *Angew. Chem., Int. Ed.* **2009**, *48*, 5094.

^{(2) (}a) Wang, X.; Mei, T. S.; Yu, J. Q. *J. Am. Chem. Soc.* **2009**, *131*, 7520. (b) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. *J. Am. Chem. Soc.* **2007**, *129*, 7666.

⁽³⁾ Giri, R.; Wasa, M.; Breazzano, S. P.; Yu, J. Q. *Org. Lett.* **2006**, *8*, 5685.

⁽⁴⁾ Chiong, H. A.; Pham, Q. N.; Daugulis, O. *J. Am. Chem. Soc.* **2007**, *129*, 9879.

^{(5) (}a) Shabashov, D.; Maldonado, J. R. M.; Daugulis, O. *J. Org. Chem.* **2008**, *73*, 7818. (b) Wasa, M.; Engle, K. M.; Yu, J. Q. *J. Am. Chem. Soc.* **2009**, *131*, 9886.

⁽⁶⁾ Larock, R. C. *Comprehensive Organic Transformations*, 2nd ed.; John Wiley & Sons, Inc.: New York, 1999; pp 1197-1620.

⁽⁷⁾ For rare examples of ketones or aldehydes serving as directing groups at Pd, see: (a) Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. *Tetrahedron* 2001, 57, 5967. (b) Gürbüz, N.; Özdemir, I.; C¸ etinkaya, B. *Tetrahedron Lett.* **2005**, *46*, 2273.

⁽⁸⁾ For reviews on ketone-directed C-H alkylation and arylation reactions catalyzed by metals other than Pd, see: (a) Alberico, D.; Scott, M. E.; Lautens, M. *Chem. Re*V*.* **²⁰⁰⁷**, *¹⁰⁷*, 174. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. *Chem. Re*V*.* [Online early access]. DOI: 10.1021/ cr900005n. Published Online: May 13, 2009. http://pubs.acs.org/doi/pdf/ 10.1021/cr900005n (accessed December 10, 2009).

subsequently remove this group to reveal the ketone functionality (Scheme 1). This communication describes the

development of *O*-acetyl oximes as versatile and readily transformable directing groups for Pd-catalyzed C-H functionalization.

Two key challenges exist in the design of a ketone surrogate for Pd-catalyzed $C-H$ functionalization. First, the protecting group must be stable to the catalytic conditions. Second, the group must be readily removed in high yield *without affecting the newly installed functional group*. Previous studies have shown that oxime ethers such as **1** (eq 1) are effective directing groups for Pd-catalyzed $sp²$ and sp³ C-H acetoxylation reactions with PhI(OAc)₂.^{9,10} How-
ever removal of the oxime ether protecting group from ever, removal of the oxime ether protecting group from β -functionalized products like 2 is problematic. Acidcatalyzed hydrolysis 11 is sluggish and produces significant quantities of elimination products 3 and 4 (eq 1).¹² The use of superstoichiometric $Ti^{III}Cl₃$ is effective in some cases,¹³ but this expensive, air-sensitive reagent is not practical for general application.

Imines would be a versatile alternative to oxime ethers, as they are readily hydrolyzed under mild conditions. Pdcatalyzed imine-directed acetoxylation of an sp^2C-H bond has been reported;^{9a} however, imines have proven too labile for analogous sp^3 C-H functionalizations. For example, reaction of **5** under standard acetoxylation conditions affords the hydrolyzed ketone **6** as the major identifiable product (39% yield, eq 2).

Simple hydroxyl (OH) oximes are another attractive ketone surrogate. These readily available, stable, often crystalline starting materials are known to direct stoichiometric cyclopalladation at both sp^2 and sp^3 C-H sites¹⁴ and are much more readily cleaved than their oxime ether counterparts.¹⁵ In addition, they are prepared from NH₂OH·HCl, which is nearly 100-fold less expensive than $NH₂OMe⁺HCl¹⁶$ Despite these advantages, oximes are known to undergo rapid oxidative cleavage in the presence of oxidants like PhI(O- $Ac)_2$.¹⁷ For example, subjecting oxime 7 to Pd(OAc)₂ and $PhI(OAc)$ ₂ in AcOH resulted in a nearly instantaneous color change from colorless to blue-green, concomitant with regeneration of the parent ketone **6**. However, encouragingly, a similar color change was *not* observed when the solvent was changed from AcOH to AcOH/Ac₂O (1:1). Under these conditions, only traces of ketone **6** (4% by GC) were formed; instead the major product (68% by GC) was the O-acetylated/ ^C-H acetoxylated compound **⁹** (eq 3).

This initial result suggested that the in situ reaction of **7** with Ac₂O affords a stable *O*-acetyl oxime (8) that can direct ^C-H acetoxylation. Further study showed that this in situ O-acetylation occurred quantitatively upon stirring the oxime starting material in AcOH/Ac₂O for 2 h at 25 $^{\circ}$ C. Subsequent addition of Pd catalyst and oxidant, followed by heating the reaction mixture at 100 °C for 12 h, afforded **8** in 70% GC yield (49% isolated).

As summarized in Table 1, a number of dialkyl oximes underwent in situ acetylation/ β -acetoxylation in modest to

(15) Corsaro, A.; Chiacchio, U.; Pistara`, V. Synthesis **2001**, 1903.

^{(9) (}a) Dick, A. R.; Hull, K. L.; Sanford, M. S. *J. Am. Chem. Soc.* **2004**, *126*, 2300. (b) Desai, L. V.; Hull, K. L.; Sanford, M. S. *J. Am. Chem. Soc.* **2004**, *126*, 9542. (c) Desai, L. V.; Malik, H. A.; Sanford, M. S. *Org. Lett.* **2006**, *8*, 3387. (d) Desai, L. V.; Stowers, K. J.; Sanford, M. S. *J. Am. Chem. Soc.* **2008**, *130*, 13285.

⁽¹⁰⁾ For related C-H acetoxylation reactions of other substrates, see: (a) Kalyani, D.; Sanford, M. S. *Org. Lett.* **2005**, *7*, 4149. (b) Giri, R.; Liang, J.; Lei, J. Q.; Li, J. J.; Wang, D. H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Q. *Angew. Chem., Int. Ed.* **2005**, *44*, 7420. (c) Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu, J. Q. *Org. Lett.* **2006**, *8*, 3387. (d) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. *Org. Lett.* **2006**, *8*, 3391. (e) Wang, G. W.; Yuan, T. T.; Wu, X. L. *J. Org. Chem.* **2008**, *73*, 4717. (f) Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.; Vedernikov, A. N. *Chem. Commun.* **2008**, 3625. (g) Stowers, K. J.; Sanford, M. S. *Org. Lett.* **2009**, *11*, 4584.

⁽¹¹⁾ For example, see: Shipe, W. D.; Sorensen, E. J. *Org. Lett.* **2002**, *4*, 2063.

⁽¹²⁾ Conversion of oxime ethers to ketones has been reported using Amberlyst 15 at temperatures ranging from 25 to 110 °C. See: (a) Sakamoto, T.; Kikugawa, Y. *Synthesis* **1993**, 563. (b) Mears, R. J.; Sailes, H. E.; Watts, J. P.; Whiting, A. *J. Chem. Soc., Perkin Trans. 1* **2000**, 3250. In our hands, **2** and derivatives were unreactive to the reported conditions at room temperature. At elevated temperatures (80 °C), **2** reacted to form a complex mixture of products that did not include the expected β -acetoxy or β -hydroxy ketone.

^{(13) (}a) Desai, L. V. Palladium-Catalyzed Functionalization of C-H Bonds and Alkenes. *Ph.D. Thesis*, University of Michigan, April 2008. (b) Corey, E. J.; Niimura, K.; Konishi, Y.; Hashimoto, S.; Hamada, Y. *Tetrahedron Lett.* **1986**, *27*, 2199.

⁽¹⁴⁾ For selected examples, see: (a) Baldwin, J. E.; Jones, R. H.; Na´jera, C.; Yus, M. *Tetrahedron* **1985**, *41*, 699. (b) Baldwin, J. E.; Na´jera, C.; Yus, M. *J. Chem. Soc., Chem. Commun.* **1985**, 126. (c) Carr, K.; Saxton, H. M.; Sutherland, J. K. *J. Chem. Soc., Perkin Trans. 1* **1988**, 1599.

⁽¹⁶⁾ Cost calculated on a molar basis using: *Aldrich Catalog Handbook of Fine Chemicals*; Aldrich Chemical: Milwaukee, WI, 2009.

⁽¹⁷⁾ Moriarty, R. M.; Prakash, O.; Vavilikolanu, P. R. *Synth. Commun.* **1986**, *16*, 1247.

Table 1. *^O*-Acetyl Oxime-Directed Acetoxylation of C-^H Bonds*^a*

a Conditions: 0.12 M in AcOH/Ac₂O (1:1), 2 h, 25 °C; then 5 mol % Pd(OAc)₂, $1-3$ equiv of PhI(OAc)₂, 80 or 100 °C, $4-12$ h. ^{*b*} The remaining mass balance (as determined by GC of the crude reaction mixtures) was generally unreacted *O*-acetyloxime (analogous to **8** in eq 3). *^c* Starting material and product consisted of a mixture of oxime *^E*/*^Z* stereoisomers. *^d* GC yield. *^e* Product consisted of a mixture of oxime *^E*/*^Z* stereoisomers.

good yields (entries $1-6$). The observed trends in reactivity and selectivity were similar to those in $sp³$ C-H functionalization reactions of related oxime ethers. 9^b For example, oxidation occurred selectively at 1° β -sp³ C-H bonds versus the analogous 2° sites (entries 1-4). Acetoxylation of a 2° ^C-H bond could be achieved in modest yield in the rigid *trans*-decalone system (entry 6). The reaction conditions were compatible with a number of functional groups, including alkyl chlorides (entry 4) and protected amines (entry 3); furthermore, remote benzylic C-H bonds were well tolerated under the oxidizing reaction conditions (entries 1, 9, and (14) .¹⁸

O-Acetyl ketoximes were also effective directing groups for Pd-catalyzed acetoxylation at sp^2 C-H sites. Both electron-poor and electron-rich aryl rings underwent mono*ortho*-oxygenation in high yields (entries 7 and 11). Further, aryl bromides (entry 8) and silyl-protected phenols (entry 12) were compatible with the reaction conditions. One notable limitation of this method is that *O*-acetyl aldoximes (for example, entry 10) were susceptible to elimination of AcOH to generate nitriles.¹⁹

The C-H acetoxylation products in Table 1 were obtained in yields comparable to those previously reported with oxime ether derivatives.9b,d However, the *O*-acetyl oxime directing group is significantly more readily deprotected. In general, β -hydroxy ketones are accessible via alcoholysis of both acetate groups (to afford β -hydroxy oximes) followed by removal of the oxime functionality. The first step can be accomplished by treatment of starting materials like **9** with K2CO3 in MeOH to afford **10** in 91% isolated yield.

While numerous methods exist for the second step (conversion of an oxime to a ketone), many of our substrates are susceptible to competing formation of side products (e.g., via alcohol oxidation, isoxazoline formation, or elimination). After extensive experimentation, we identified the use of NaHSO₃ in EtOH/H₂O²⁰ as the most general and high yielding method to transform these oximes into β -hydroxy ketones while circumventing undesired side reactions and persistent byproducts. Under these conditions, substrate **10** was converted cleanly to **11** in 80% yield. Compound **11** was obtained in pure form by a simple extraction, obviating the need for chromatography.

The two deprotection steps could also be combined to provide an operationally simple, high-yielding, one-pot route from *O*-acetyl oxime C-H oxidation products to β -hydroxy ketones (eq 4). For example, treatment of 9 with K_2CO_3 in MeOH, followed by addition of NaHSO₃ and H₂O, provided **11** in 80% yield after a simple extractive workup (eq 4). As shown in Table 2, this one-pot deprotection could also be achieved with other substrates. Under these conditions, elimination products were not observed, and isoxazoline formation was limited to $\leq 5\%$.

An important characteristic of the *O*-acetyl oxime directing group is that it enables access to a variety of additional

⁽¹⁸⁾ The acetoxylated products were typically isolated as mixtures of *E*/*Z* oxime stereoisomers, which rapidly interconvert under the catalytic reaction conditions.

⁽¹⁹⁾ For an example under similar conditions, see: Waring, P. *Aust. J. Chem.* **1988**, *41*, 667.

⁽²⁰⁾ Pines, S. H.; Chermerda, J. M.; Kozlowski, M. A. *J. Org. Chem.* **1966**, *31*, 3446.

^{*a*} Conditions in entries $1-3$ (one pot): K₂CO₃ (3×0.15 equiv/2.5 h), MeOH, 25 °C, then 3.5 equiv of NaHSO₃, H₂O, 80 °C, 3 h. Conditions in entry 4 (two steps): (i) $0.\overline{15}$ equiv of K₂CO₃, MeOH, 25 °C, 1 h, then (ii) 3.5 equiv of NaHSO₃, H₂O, EtOH, 90 \degree C, 12 h.

structural motifs from a common synthetic intermediate. As exemplified with 12 in Scheme 2, K_2CO_3 -catalyzed metha-

nolysis of the acetyl groups provided oxime **13** in quantitative yield. Product **13** could then be converted to the corresponding acetophenone **14**, to oxazoline **15** (via Beckmann rearrangement²¹ followed by intramolecular condensation), to amino phenol 16 (via reduction),²² and to diol 17 (via oxime hydrolysis followed by reduction).²³

Preliminary results indicate that these *O*-acetyl oximes are also effective directing groups for other Pd-catalyzed C-^H functionalization reactions. For example, as shown in Scheme 3, the Pd-catalyzed iodination of **18** and chlorination of **19**

proceeded to form aryl halides **20** and **21** in modest to good yields.²⁴ Interestingly, under standard Pd-catalyzed C-H arylation conditions with PhI and AgOAc in TFA,²⁵ **19** underwent in situ Beckmann rearrangement/C-H phenylation to afford acetamide **22**.

In conclusion, this letter describes the use of in situ generated *O*-acetyl oximes as effective directing groups in Pd-catalyzed C-H functionalization reactions. These directing groups are stable under the catalytic reaction conditions but can then be readily manipulated to afford ketones, alcohols, amines, and heterocycles.

Acknowledgment. We thank the NIH NIGMS (GM-073836) for support of this research. Additional support from Dupont, AstraZeneca, Merck, Amgen, Abbott, GlaxoSmith-Kline, Roche, Eli Lilly, and Bristol Myers Squibb is gratefully acknowledged.

Supporting Information Available: Experimental details and spectroscopic data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL902720D

⁽²¹⁾ Xiao, L. F.; Xia, C. G.; Chen, J. *Tetrahedron Lett.* **2007**, *48*, 7218.

⁽²²⁾ Chung, J. U.; Kim, S. Y.; Lim, J. O.; Choi, H. K.; Kang, S. U.; Yoon, H. S.; Ryu, H.; Kang, D. W.; Lee, J.; Kang, B.; Choi, S.; Toth, A.; Pearce, L. V.; Pavlyukovets, V. A.; Lundberg, D. J.; Blumberg, P. M. *Bioorg. Med. Chem.* **2007**, *15*, 6043.

⁽²³⁾ Prein, M.; Maurer, M.; Peters, E. M.; Peters, K.; von Schnering, H. G.; Adam, W. *Chem.*-*Eur. J.* 1995, 1, 89.

^{(24) (}a) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. *Org. Lett.* **2006**, *8*, 2523. (b) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. *Tetrahedron* **2006**, *62*, 11483.

⁽²⁵⁾ Daugulis, O.; Zaitsev, V. G. *Angew. Chem., Int. Ed.* **2005**, *44*, 4046.